CHEMICAL AND BIOLOGICAL ENGINEERING

https://www.mccormick.northwestern.edu/chemical-biological/

Degree Types: MS, PhD

Graduates of the Chemical and Biological Engineering Program (https://www.mccormick.northwestern.edu/chemical-biological/graduate) develop mastery of modern chemical and biological engineering theory and practice through a core curriculum. They gain specialized knowledge through elective courses within and outside of the department.

PhD candidates collaborate with a faculty member to develop and pursue a research program that defines and solves a problem at the frontier of chemical engineering. MS candidates are also able to pursue research with the thesis option.

Current areas of research interest by faculty in the department are organized into the broad categories of:

1. biotechnology, bioengineering, and complexity,
2. energy and sustainability, and
3. materials and nanotechnology.

Degrees Offered

• Chemical and Biological Engineering MS (https://catalogs.northwestern.edu/tgs/chemical-biological-engineering/chemical-biological-engineering-ms)
• Chemical and Biological Engineering PhD (https://catalogs.northwestern.edu/tgs/chemical-biological-engineering/chemical-biological-engineering-phd)

Chemical and Biological Engineering Courses

CHEM_ENG 307-0 Kinetics and Reactor Engineering (1 Unit)
Chemical reaction kinetics with application to the design of chemical reactors.
Prerequisites: CHEM_ENG 210-0, CHEM_ENG 211-0, CHEM_ENG 321-0, CHEM_ENG 322-0.

CHEM_ENG 312-0 Probability and Statistics for Chemical Engineering (1 Unit)
Introduction to probability theory and statistical methods necessary for analyzing the behavior of processes and experiments. Statistical tests for detecting significant changes in process parameters.
Prerequisites: MATH 220-1, MATH 220-2, MATH 228-1, & MATH 228-2 (formerly listed as MATH 220-0, MATH 224-0, MATH 230-0, & MATH 234-0), or ES_APPM 252-1 & ES_APPM 252-2.

CHEM_ENG 321-0 Fluid Mechanics (1 Unit)
Derivation and applications of continuity and Navier-Stokes equations. Macroscopic mass, momentum, and energy balance. Dimensional analysis: friction factors in pipes and packed beds; drag coefficients.
Prerequisites: completion of mathematics requirements with no grades of D; GEN_ENG 205-4 (C- or better).

CHEM_ENG 322-0 Heat Transfer (1 Unit)
The differential equations of energy transport. Solutions for various applications.

Prerequisites: completion of mathematics requirements with no grades of D; GEN_ENG 205-4 (C- or better); CHEM_ENG 321-0 recommended.

CHEM_ENG 323-0 Mass Transfer (1 Unit)
Diffusion and rate concepts; application to distillation, extraction, absorption, humidification, drying.
Prerequisites: CHEM_ENG 321-0, CHEM_ENG 322-0.

CHEM_ENG 330-0 Molecular Engineering and Statistical Mechanics (1 Unit)
Basic statistical mechanics. Applications to thermodynamics, kinetics, and transport of various engineering systems, including frontier areas of chemical and biological engineering. Not open to students who have taken CHEM_ENG 406-0, CHEM 342-3, or PHYSICS 332-0.
Prerequisite: CHEM_ENG 211-0 or another thermodynamics course; courses in probability and statistics, heat transfer, or other transport recommended.

CHEM_ENG 341-0 Dynamics and Control of Chemical and Biological Processes (1 Unit)
Dynamic behavior of chemical process components. Feedback control principles.
Prerequisites: CHEM_ENG 307-0; senior standing.

CHEM_ENG 342-0 Chemical Engineering Laboratory (1 Unit)
Operation and control of process equipment for the determination of operating data. Analysis and written presentation of results.
Prerequisites: CHEM_ENG 212-0, CHEM_ENG 307-0, CHEM_ENG 321-0, CHEM_ENG 322-0, CHEM_ENG 323-0.

CHEM_ENG 345-0 Process Optimization for Energy and Sustainability (1 Unit)
Modern techniques and application to the design and operation of chemical process systems. Steady-state and dynamic methods.
Experimental search for the optimum.
Prerequisite: junior standing.

CHEM_ENG 351-0 Process Economics, Design, & Evaluation (1 Unit)
Preliminary design of industrial processes for the production of chemical and allied products by the application of the engineering sciences and economics.
Prerequisites: CHEM_ENG 212-0, CHEM_ENG 307-0, CHEM_ENG 321-0, CHEM_ENG 322-0, CHEM_ENG 323-0.

CHEM_ENG 352-0 Chemical Engineering Design Projects (1 Unit)
Design of chemical and process plants applying the principles of unit operations, thermodynamics, reaction kinetics, and economics.
Mechanical design and selection of chemical process equipment.
Prerequisite: CHEM_ENG 351-0.

CHEM_ENG 355-0 Chemical Engineering Product Design (1 Unit)
Properties and selection of chemicals for products from single-molecule pharmaceuticals to devices to manufactured products such as food and consumer goods.
Prerequisite: junior standing.

CHEM_ENG 361-0 Introduction to Polymers (1 Unit)
Polymerization mechanisms and their relation to molecular structure, polymerization processes, and the mechanical properties of polymers, especially flow behavior.
Prerequisites: CHEM_ENG 211-0 or other thermodynamics course; CHEM 210-1.

CHEM_ENG 364-0 Chemical Processing and the Environment (1 Unit)
Application of chemical engineering fundamentals to environmental problems. Chemistry and mechanisms, chemical reaction and rate, and transport emphasized. Risk assessment and analysis revealed through case studies.
CHEM_ENG 382-0 Regulatory Sciences in Biotechnology (1 Unit)
Introduction to the development and application of data-analytical and theoretical methods, mathematical modeling, and computational simulation techniques to the study of biological systems.

CHEM_ENG 379-0 Computational Biology: Principles & Applications (1 Unit)
Theory and practice of biological microscopy in a lab setting; image acquisition, analysis, and the ethics of image manipulation.

CHEM_ENG 382-0 Regulatory Sciences in Biotechnology (1 Unit)
Course on topics at the intersection of science, engineering, and biotech regulatory compliance. Federal regulations for drug product development; regulatory compliance processes and organizational structure; interface between biotechnology processes and regulatory sciences; global harmonization of regulations; regulatory documentation.

CHEM_ENG 395-0 Special Topics in Chemical Engineering (1 Unit)
Prerequisites: CHEM_ENG 210-0 or CIV_ENV 260-0.
Topics suggested by students or faculty and approved by the department.

CHEM_ENG 404-0 Advanced Thermodynamics (1 Unit)
Prerequisites: MATH 228-1 (formerly listed as MATH 230-0).
Interpretation of chemical rate selectivity data in homogeneous and heterogeneous reaction systems. Development and application of the theory of chemical kinetics, including collision, transition state, and surface reactivity approaches. Theory and analysis of reaction in heterogeneous phases. Reactor design with applications to and extension of ideal and nonideal reactor models: gas-solid, gas-liquid, and three-phase reactor design.

CHEM_ENG 409-0 Advanced Reactor Design (1 Unit)
Advanced engineering aspects of reactor design. Analysis of coupled transport processes and chemical reaction in application to realistic design and scale-up of various types of chemical reactors. Optimization problems in reactor design and operation.

CHEM_ENG 410-0 Principles of Heterogeneous Catalysis (1 Unit)
Prerequisite: CHEM_ENG 307-0, or consent of instructor.

CHEM.ENG 373-0 Biotechnology and Global Health (1 Unit)
Overview of synthetic biology's foundations in the natural sciences and engineering and its applications in medicine, biotechnology, and green chemistry. How engineering driven approaches may be used to accelerate design-build-test loops required for reprogramming existing biological systems and constructing new ones.
Prerequisite: CHEM_ENG 275-0 or BIOL_SCI 215-0 or BIOL_SCI 219-0.

CHEM.ENG 377-0 Bioseparations (1 Unit)
Introduction to the development and application of data-analytical and theoretical methods, mathematical modeling, and computational simulation techniques to the study of biological systems.

CHEM.ENG 381-0 Practical Biological Imaging (1 Unit)
Recent advances in synthetic biology and genetic, metabolic, and tissue engineering. Design, development, and commercialization of healthcare technologies for countries in the developing world and the challenges of deploying preventative, diagnostic, and therapeutic products in these settings.

CHEM.ENG 375-0 Biochemical Engineering (1 Unit)
Overview of synthetic biology's foundations in the natural sciences and engineering and its applications in medicine, biotechnology, and green chemistry. How engineering driven approaches may be used to accelerate design-build-test loops required for reprogramming existing biological systems and constructing new ones.
Prerequisite: CHEM_ENG 275-0 or BIOL_SCI 215-0 or BIOL_SCI 219-0.

CHEM.ENG 372-0 Bionanotechnology (1 Unit)
Physical biology of the cell and its implications for nanotechnology, with a focus on the quantitative description of sizes, shapes, times, and energies at the nanoscale.
Prerequisite: MATH 228-1 (formerly listed as MATH 230-0).

CHEM.ENG 376-0 Principles of Synthetic Biology (1 Unit)
Fundamental aspects of polymer rheology, including the theory of linear viscoelasticity, measurement of fundamental flow properties, constitutive equations, the kinetic- molecular theories of viscoelasticity, and polymer processing behavior.

CHEM.ENG 463-0 Polymerization Reaction Engineering (1 Unit)
Polymerization reactions and resulting molecular weight distributions; modeling of polymerization kinetics; batch, continuous stirred tank and tubular flow reactor design for optimal polymerizations; emulsion and catalyzed polymerizations; photoresist technology.
CHEM_ENG 472-0 Interfacial Phenomena and Bionanotechnology (1 Unit)

CHEM_ENG 477-0 Bioseparations (1 Unit)
Downstream processing in biotechnology. Separation and lysis of cells. Recovery of organelles and proteins. Protein separation and purification. Prerequisites: CHEM_ENG 321-0, CHEM_ENG 323-0 (or equivalent), CHEM_ENG 375-0.

CHEM_ENG 478-0 Advances in Biotechnology (1 Unit)
The emergence of new tools and ideas in biotechnology continues to accelerate, and this course is an introduction to a range of topics at the forefront of this field. The objective of this class is to expose students to the multidisciplinary research, and provide technical and intellectual skills from fields such as biochemical engineering, biochemistry, bioengineering, biomaterials, metabolic engineering, molecular biology, nanobiotechnology, pharmacology, and tissue engineering.

CHEM_ENG 489-0 Selected Topics in Chemical Engineering (1 Unit)
Selected topics from recent literature.

CHEM_ENG 499-0 Projects (1-3 Units)
Thorough study and submission of a report on a chemical engineering problem. Permission of instructor and department required. May be repeated for credit.

CHEM_ENG 510-0 Seminar (0 Unit)
Department seminar.

CHEM_ENG 520-0 Professional Development in Research in Chemical and Biological Engineering (0 Unit)
A required class for all PhD students in Chemical and Biological Engineering. This class will cover necessary skills and best practices for research, including expectation and intensity, developing and maintaining a network, running an effective meeting, effective correspondence, interfacing with collaborators, effective oral and written scientific communication, data management, and digging into the research literature.

CHEM_ENG 590-0 Research (1-4 Units)
Independent investigation of selected problems pertaining to thesis or dissertation. May be repeated for credit.