ES_APPM 311-0 Methods of Applied Mathematics (1 Unit)
Prerequisites: MATH 250-0, or GEN_ENG 205-4, or GEN_ENG 206-4.

ES_APPM 311-1 Methods of Applied Mathematics (1 Unit)
Prerequisite: GEN_ENG 205-4, GEN_ENG 206-4, or MATH 250-0.

ES_APPM 312-0 Complex Variables (1 Unit)
Imaginary numbers and complex variables, analytic functions, calculus of complex functions, contour integration with application to transform inversion, conformal mapping.
Prerequisite: GEN_ENG 205-4, GEN_ENG 206-4, or MATH 250-0.

ES_APPM 322-0 Applied Dynamical Systems (1 Unit)
Example-oriented survey of nonlinear dynamical systems, including chaos. Combines numerical exploration of differential equations describing physical problems with analytic methods and geometric concepts. Applications to mechanical, fluid dynamical, electrical, chemical, and biological systems.
Prerequisites: ES_APPM 311-1 and ES_APPM 311-2 or equivalent or consent of instructor.

ES_APPM 344-0 High Performance Scientific Computing (1 Unit)
Solving partial differential equations using high performance computing platforms. Basic C programming. Distributed computing using MPI. GPU programming using CUDA. Adaptation of algorithms for solving PDE’s to different architectures.

ES_APPM 345-0 Applied Linear Algebra (1 Unit)
Understanding and implementation of algorithms to calculate matrix decompositions such as eigenvalue/vector, LU, QR, and SVD decompositions. Applications include data-fitting, image analysis, and ranking algorithms.

ES_APPM 346-0 Modeling and Computation in Science & Engineering (1 Unit)
Advanced techniques for initial value problems, differential algebraic systems, bifurcations, chaos, and partial differential equations. Applications drawn from different physical areas.
Prerequisites: MATH 228-2, MATH 240-0, and MATH 250-0; or GEN_ENG 205-4 and PHYSICS 135-1, PHYSICS 135-2; or equivalent; familiarity with a programming language; or consent of instructor.

ES_APPM 370-1 Introduction to Computational Neuroscience (1 Unit)

ES_APPM 375-1 Quantitative Biology I: Experiments, Data, Models, and Analysis (1 Unit)
High-resolution, high-throughput, and dynamic imaging and sequencing data is the substrate of modern biology. The course consists of case-studies where we learn how to computational work with, analyze, and make sense of experimental dataset using fundamental principles of mathematics, statistics, and physics. No formal course prerequisites. Programming in python.

ES_APPM 375-2 Quantitative Biology II: Experiments, Data, Models, and Analysis (1 Unit)
High-resolution, high-throughput, and dynamic imaging and sequencing data is the substrate of modern biology. In this course we learn how to perform experiments, and computational work with, analyze, and make sense of experimental dataset using fundamental principles of mathematics, statistics, and physics. No formal course prerequisites. Programming in python.

ES_APPM 395-0 Special Topics (1 Unit)

ES_APPM 398-0 Introduction to Applied Math Research (0 Unit)
This is a seminar course where ESAM faculty present their current and planned research topics in applied mathematics.

ES_APPM 401-0 Options Pricing: Theory and Applications (1 Unit)
Consideration of ordinary and elementary partial differential equations models of problems in science and engineering, arising in various areas of application.
Prerequisites: Permission of instructor and department.

ES_APPM 411-1 Differential Equations of Mathematical Physics (1 Unit)

ES_APPM 411-2 Differential Equations of Mathematical Physics (1 Unit)

ES_APPM 411-3 Differential Equations of Mathematical Physics (1 Unit)

ES_APPM 412-0 Methods of Nonlinear Analysis (1 Unit)
Methods for analyzing nonlinear problems in science and engineering. Constructive approach to bifurcation theory and stability theory, dynamical response of nonlinear systems, nonlinear oscillations and phase plane analysis, nonlinear wave propagation, and perturbation methods.

ES_APPM 420-1 Asymptotic and Perturbation Methods in Applied Mathematics (1 Unit)

ES_APPM 420-2 Asymptotic and Perturbation Methods in Applied Mathematics (1 Unit)
ES_APPM 420-3 Asymptotic and Perturbation Methods in Applied Mathematics (1 Unit)

ES_APPM 421-1 Models in Applied Mathematics (1 Unit)
Applications to illustrate typical problems and methods of applied phenomena. Mathematical formulation of models for phenomena in science and engineering, problem solution, and interpretation of results. Examples from solid and fluid mechanics, combustion, diffusion phenomena, chemical and nuclear reactors, and biological processes.

ES_APPM 426-0 Theory of Flows With Small Inertia (1 Unit)
Asymptotic methods for flows with small inertia: flows past bodies and matching procedures. Slowly varying flows: lubrication theory and Held-Shaw flow; swimming of microorganisms and suspension of particles.

ES_APPM 428-0 Boundary Integral Method (1 Unit)

ES_APPM 429-0 Data Driven Methods for Dynamical Systems (1 Unit)
The goal is to understand the suitability of different methods for characterizing dynamical systems with noise, nonlinearities, and other characteristics. We will discuss the mathematical and statistical assumptions made in order to perform the various steps described above.

ES_APPM 430-0 Wave Propagation (1 Unit)

ES_APPM 440-0 Integral Equations & Applications (1 Unit)

ES_APPM 441-0 Mathematical Models in Biology (0.5 Unit)
A half-credit course discusses classical mathematical models of biological systems, with emphasis on the modeling process. Modeling tools used include ordinary and partial differential equations as well as agent-based frameworks. Topics may include chemotaxis, cellular aggregation, morphogenesis, and other classical systems that lend themselves to mathematical modeling. No biological background is required.

ES_APPM 442-0 Stochastic Differential Equations (1 Unit)
Brownian motion and Langevin’s equation. Ito and Stratonovich stochastic integrals. Stochastic calculus and Ito’s formula. SDEs and PDEs of Kolmogorov, Fokker-Planck, and Dynkin. Boundary conditions, exit times, exit distributions, stability. Asymptotic analysis of SDE, the Smoluchowski-Kramers approximation, and diffusion approximation to Markov chains. Applications.

ES_APPM 444-0 High Performance Scientific Computing (1 Unit)
Solving partial differential equations using high performance computing platforms. Basic C programming. Distributed computing using MPI, GPU programming using CUDA. Adaptation of algorithms for solving PDE’s to different architectures.

ES_APPM 445-0 Iterative Methods for Elliptic Equations (1 Unit)
Analysis and application of numerical methods for solving elliptic equations. Stationary iterative, multigrid, conjugate gradient, GMRES methods and preconditioners.

ES_APPM 446-1 Numerical Solution of Partial Differential Equations (1 Unit)

ES_APPM 446-2 Numerical Solution of Partial Differential Equations (1 Unit)