MATERIALS SCIENCE & ENGINEERING (MAT_SCI)

MAT_SCI 314-0 Thermodynamics of Materials (1 Unit)
Classical and statistical thermodynamics; entropy and energy functions in liquid and solid solutions, and their applications to phase equilibria. Lectures, problem solving. Materials science and engineering degree candidates may not receive credit for 314 with or after CHEM 342-1. Prerequisite: CHEM 132-0, CHEM 152-0, or CHEM 172-0; MATH 228-1; or PHYSICS 135-1 or equivalent.

MAT_SCI 315-0 Phase Equilibria & Diffusion of Materials (1 Unit)

MAT_SCI 316-1 Microstructural Dynamics (1 Unit)
Principles underlying development of microstructures. Defects, diffusion, phase transformations, nucleation and growth, thermal and mechanical treatment of materials. Lectures, laboratory. Prerequisite: MAT_SCI 315-0 or equivalent.

MAT_SCI 316-2 Microstructural Dynamics (1 Unit)
Principles underlying development of microstructures. Defects, diffusion, phase transformations, nucleation and growth, thermal and mechanical treatment of materials. Lectures, laboratory. Prerequisite: MAT_SCI 315-0 or equivalent.

MAT_SCI 318-0 Materials Selection (1 Unit)
Methods of specifying materials and the processes for making them in the context of a given application. Service performance of materials based on their physical and chemical properties. Case studies and use of high-level databases. Prerequisite: MAT_SCI 201-0 or equivalent.

MAT_SCI 331-0 Soft Materials (1 Unit)
Different kinds of polymeric materials. Relationships between structure and physical properties; rubber elasticity, the glassy state, crystallinity in polymers. Lectures, laboratory. Prerequisites: MAT_SCI 301-0 or equivalent; MAT_SCI 314-0 or CHEM 342-1; MAT_SCI 316-1 and MAT_SCI 316-2 highly recommended.

MAT_SCI 332-0 Mechanical Behavior of Solids (1 Unit)
Plastic deformation and fracture of metals, ceramics, and polymeric materials; structure/property relations. Role of imperfections, state of stress, temperatures, strain rate. Lectures, laboratory. Prerequisites: MAT_SCI 316-1; MAT_SCI 316-2 (may be taken concurrently); CIV_ENV 216-0 or consent of instructor.

MAT_SCI 333-0 Composite Materials (1 Unit)
Introduction to ceramic-, metal-, polymer-matrix composites for structural applications. Emphasis on structure (reinforcements, architecture), properties (elasticity, strength, toughness, creep), processing, role of interface. Prerequisites: MAT_SCI 316-1, MAT_SCI 316-2, MAT_SCI 332-0.

MAT_SCI 336-0 Chemical Synthesis of Materials (1 Unit)
The design of materials targeting important properties through processes that break and form primary chemical bonds. Fundamental principles and main methodologies, including polymerization, biosynthesis, self-assembly, solgel reactions, synthesis of nanomaterials, vapor-phase synthesis, and composite synthesis. Prerequisite: junior standing in materials science and engineering or consent of instructor.

MAT_SCI 337-0 Conducting Polymers (1 Unit)
Fundamentals and applications of conducting polymers. Hands-on experience in synthesizing conducting polymer nanostructures. Prerequisite: MAT_SCI 331-0 or consent of instructor.

MAT_SCI 340-0 Ceramic Processing (1 Unit)
Steps in production of fired ceramic articles. Powder preparation and characterization, compact formation, slip casting, extrusion and injection molding; firing, liquid-phase and solid-state sintering. Lectures, laboratory. Prerequisite: MAT_SCI 316-1 or equivalent.

MAT_SCI 341-0 Introduction to Modern Ceramics (1 Unit)
Applications of ceramic materials, with emphasis on structure (bond, crystal, glass, defect, micro-); properties (thermal, electrical, optical, magnetic, mechanical); and processing (powders, forming, densification). Prerequisites: MAT_SCI 316-1, MAT_SCI 316-2 or consent of instructor.

MAT_SCI 351-1 Introductory Physics of Materials (1 Unit)
Quantum mechanics; applications to materials and engineering. Band structures and cohesive energy; thermal behavior; electrical conduction; semiconductors; amorphous semiconductors; magnetic behavior of materials; liquid crystals. Lectures, laboratory, problem solving. Prerequisites: MAT_SCI 301-0 or equivalent or consent of instructor; GEN_ENG 205-4 or equivalent; PHYSICS 135-2; PHYSICS 135-3; MAT_SCI 351-1 is prerequisite for MAT_SCI 351-2.

MAT_SCI 351-2 Introductory Physics of Materials (1 Unit)
Quantum mechanics; applications to materials and engineering. Band structures and cohesive energy; thermal behavior; electrical conduction; semiconductors; amorphous semiconductors; magnetic behavior of materials; liquid crystals. Lectures, laboratory, problem solving. Prerequisites: MAT_SCI 301-0 or equivalent or consent of instructor; GEN_ENG 205-4 or equivalent; PHYSICS 135-2; PHYSICS 135-3; MAT_SCI 351-1 is prerequisite for MAT_SCI 351-2.

MAT_SCI 353-0 Bioelectronics (1 Unit)
Development and design of sensors, stimulators, and their medical devices for biointegrated electronics. Materials design and fabrication of passive and active components for sensitive, multimodal, and robust wearable and implantable devices.

MAT_SCI 354-0 Bioelectronics Lab (0.34 Unit)
Laboratories focused on the practical implementation, instrumentation, and fabrication of wearables and skinsensing. Applications range from vital sign monitoring to rehabilitation.

MAT_SCI 355-0 Electronic Materials (1 Unit)
Principles, models, and characterization of semiconductor materials. Crystal growth and doping. Diffusion, epitaxy, and monolithic processes. Current transport, non-equilibrium processes, thin films, low-mobility materials, and interfaces. Prerequisite: MAT_SCI 316-1 or consent of instructor.

MAT_SCI 357-0 Nanomagnetic Materials for Information Storage (1 Unit)
Overview of materials used for magnetic data storage and of the recording and read processes. Information storage systems, such as optical, solid-state, and probe. Theoretical background for understanding the four energy terms that control the properties of magnetic materials when they are patterned at the nanoscale.

MAT_SCI 360-0 Introduction to Electron Microscopy (1 Unit)
Theories and practice involved in application of scanning electron microscopy and transmission electron microscopy. Lectures, laboratory.
Primarily for undergraduates and for graduate students in other departments.
Prerequisites: MAT_SCI 301-0; PHYSICS 135-2, PHYSICS 135-3 or equivalent.

MAT_SCI 361-0 Crystallography & Diffraction (1 Unit)
Elementary crystallography. Basic diffraction theory; reciprocal space. Applications to structure analysis, preferred orientation. Film and counter techniques. Lectures, laboratory.
Prerequisites: GEN_ENG 205-4; PHYSICS 135-2, PHYSICS 135-3.

MAT_SCI 362-0 Point, Line & Planar Imperfections (1 Unit)
Introduction to point defects, dislocations, and internal interfaces in crystalline solids. Interactions among point, line, and planar imperfections. Metals, ionic solids, semiconductors.
Prerequisite: MAT_SCI 315-0.

MAT_SCI 370-0 Biomaterials (1 Unit)
Introduction to biomaterials from a materials science perspective, focusing on synthesis, structure, and properties. Materials used for human repair (permanent implants, devices, materials for drug delivery, tissue-engineering scaffolds); naturally occurring and engineered materials synthesized through biotechnology; biomimetic materials that copy microstructures from nature. Taught with BMD_ENG 343-0; may not receive credit for both courses.

MAT_SCI 371-0 Biominerals: Hierarchical Architecture & Function (1 Unit)
How biologically based processing of mineralorganic composites used by living organisms inspires new approaches to materials synthesis in many critical applications–locomotion (bones), defense (shells), and sensing (light, acceleration, magnetic fields).
Prerequisite: MAT_SCI 316-2 or equivalent, or consent of instructor.

MAT_SCI 376-0 Nanomaterials (1 Unit)
Introduction to structure-property relationships of materials processed at the nanometer scale. Highly interdisciplinary course appropriate for undergraduate and graduate students in other departments.
Prerequisite: MAT_SCI 351-1 or consent of instructor.

MAT_SCI 380-0 Intro Surface Science & Spectroscopy (1 Unit)
Surface spectroscopy, including Auger spectroscopy, photoemission, and LEED. Surface dynamics and thermodynamics. Electronic properties of surfaces and interfaces. Gas-surface interactions.
Prerequisite: MAT_SCI 351-0 or equivalent.

MAT_SCI 381-0 Materials for Energy-Efficient Technology (1 Unit)
A materials science approach to the challenges of energy efficient technology: energy content of materials; advanced materials for energy harvesting, transmission, storage, and conversion; materials for energy efficient transportation and housing. Term paper and oral presentation.
Prerequisite: MAT_SCI 201-0, MAT_SCI 301-0, or consent of instructor.

MAT_SCI 382-0 Electrochemical Energy Materials and Devices (1 Unit)
Thermodynamics and kinetics of electrochemical processes. Materials for fuel cells, batteries, and electrochemical capacitors, including electrolytes and electrodes. Electrical and mass transport. Effect of microstructure. Electrochemical characterization. Device configurations. Prerequisite: senior standing or consent of instructor.

MAT_SCI 390-0 Materials Design (1 Unit)
Analysis and control of microstructures. Quantitative process/structure/property/performance relations, with case studies. Computer lab for modeling multicomponent thermodynamics and transformation kinetics. Prerequisites: MAT_SCI 315-0, MAT_SCI 316-1, MAT_SCI 316-2, or consent of instructor.

MAT_SCI 391-0 Process Design (1 Unit)
Processing of materials. Design and analysis of experiments to identify and optimize key parameters to control properties and performance. Resolving conflicting requirements. Statistical process control. Prerequisite: MAT_SCI 316-1 or equivalent.

MAT_SCI 395-0 Special Topics in Materials Science and Engineering (1 Unit)
Topics suggested by students or faculty and approved by the department.

MAT_SCI 397-0 Special Topics in Materials Science and Engineering (0.34 Unit)
Special Topics in Materials Science and Engineering, Laboratory emphasis.

MAT_SCI 401-0 Chemical & Statistical Thermodynamics of Materials (1 Unit)
Chemical thermodynamics via analytical and statistical approaches, including chemical potentials, conditions for equilibrium, distribution functions, ideal and regular solutions, and phase diagrams. Graduate core course.

MAT_SCI 402-0 Structure of Crystalline and Noncrystalline Materials (1 Unit)
Descriptors of material structure for crystalline and noncrystalline materials. Constitutive relationships described by tensors of rank 1 to 4. Classes of materials.

MAT_SCI 404-0 Imperfections in Materials (1 Unit)
Point, line, and planar imperfections in metals and ionic and semiconducting crystals. Diffusion. Interactions between crystal imperfections. Graduate core course.

MAT_SCI 405-0 Physics of Solids (1 Unit)
Reciprocal lattice representation, diffraction, Brillouin zone construction, bonding, lattice vibrations, phonon dispersion, and energy band structure of solids. Graduate core course.

MAT_SCI 406-0 Symmetry and Mechanical Properties of Materials (1 Unit)
Point group symmetry of crystals and the symmetry of properties; stress and strain tensors, piezoelectricity, elasticity, low- and high-temperature deformation of crystalline and noncrystalline materials, fatigue, and fracture. Graduate core course.

MAT_SCI 408-0 Phase Transformations in Materials (1 Unit)
Surfaces and interfaces, thermodynamics of phase transformations, nucleation, growth of precipitates, coarsening, and spinodal decomposition. Graduate core course.

MAT_SCI 411-0 Phase Transformations in Crystalline Materials (1 Unit)
Advanced treatment of order-disorder transformations, spinodal ordering, effects of stress on transformations, and displacive transformations.

MAT_SCI 415-0 Fundamentals of Thin Film Materials (1 Unit)
Vapor-phase film deposition techniques, adsorption, nucleation mechanisms, selective deposition, structure-zone diagrams, epitaxy, and composition.

MAT_SCI 416-0 Kinetics (1 Unit)
Principles of Irreversible Thermodynamics; Driving Forces and Fluxes; Diffusion in the Presence of Stress; Diffusion Resulting from other Gradients; Diffusion Resulting from Discrete Jumps; Diffusion in Crystals; Diffusion Controlled versus Source/Sink Controlled Kinetics; Surface Rearrangements by Evaporation and Condensation; Coarsening of Microstructures due to Capillary Forces; Growth of Phases in Concentration Gradients; Growth of Phases in Thermal Gradients; Evaporation of Metal Crystals; Vapor-Liquid-Solid (VLS) Growth Mechanism of the Growth of Nanowires.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT_SCI 434-0</td>
<td>Fracture of Brittle Solids (1 Unit)</td>
<td></td>
<td>Theory and experimental results on fatigue and fracture of metals.</td>
</tr>
<tr>
<td>MAT_SCI 435-0</td>
<td>High Temperature Materials (1 Unit)</td>
<td></td>
<td>Current research fields such as environmental effects on mechanical behavior at elevated temperatures, advanced instrumentation, advanced techniques, and surface interactions.</td>
</tr>
<tr>
<td>MAT_SCI 444-0</td>
<td>Organic Nanomaterials (1 Unit)</td>
<td></td>
<td>The materials science and chemistry of soft nanomaterials for myriad applications including nanomedicine. Preparative and synthetic approaches to organized, assembled, discrete nanomaterials will be described. Course will include an in depth discussion of advanced characterization techniques and strategies for this class of material.</td>
</tr>
<tr>
<td>MAT_SCI 445-0</td>
<td>Special Topics in High Polymer Science (1 Unit)</td>
<td></td>
<td>Topics include application of statistical mechanics, morphology and crystallinity, spectroscopy, flow theory and molecular motion, and statistical theories of polymer composition and structure.</td>
</tr>
<tr>
<td>MAT_SCI 451-0</td>
<td>Advanced Physics of Materials (1 Unit)</td>
<td></td>
<td>Energy bands in solids, electronic conduction processes, dielectric properties, optical properties, semiconductors, magnetism, superconductivity, artificial structures, and amorphous materials.</td>
</tr>
<tr>
<td>MAT_SCI 452-0</td>
<td>Selected Topics in the Solid State (1 Unit)</td>
<td></td>
<td>Topics include electrical and optical properties of solids, magnetic properties, theory of solids, and surface and interface physics.</td>
</tr>
<tr>
<td>MAT_SCI 455-0</td>
<td>Solid State Physics of Nanomaterials (1 Unit)</td>
<td></td>
<td>Electrical, optical and magnetic properties of reduced-dimensional materials and nanostructures.</td>
</tr>
<tr>
<td>MAT_SCI 456-0</td>
<td>Functional Metamaterials (1 Unit)</td>
<td></td>
<td>Ordered composite materials with properties distinct from those of the component building blocks. Structure-property relationships for designing metamaterials with electronic, optical, magnetic, and thermal functionality.</td>
</tr>
<tr>
<td>MAT_SCI 458-0</td>
<td>Atomic Scale Computational Materials Science (1 Unit)</td>
<td></td>
<td>Theory and application of atomic-scale computational materials tools to model, understand, and predict the properties of real materials.</td>
</tr>
<tr>
<td>MAT_SCI 465-0</td>
<td>Advanced Electron Microscopy & Diffraction (1 Unit)</td>
<td></td>
<td>Theories of electron diffraction; theories of diffraction contrast and their application to lattice disorder; phase transformation. Current topics in electron and other charged-particle microscopy.</td>
</tr>
<tr>
<td>MAT_SCI 466-0</td>
<td>Analytical Electron Microscopy (1 Unit)</td>
<td></td>
<td>Diversity of analytical techniques in modern TEM, fundamental concepts in quantitative x-ray, EELS, CBED microanalysis, advanced AEM instrumentation, techniques and applications to physical and life sciences.</td>
</tr>
<tr>
<td>MAT_SCI 471-0</td>
<td>Materials Biology (1 Unit)</td>
<td></td>
<td>This class is addressed at graduate students with background in Engineering, Chemistry, and Physics, who want to acquire a working knowledge of key concepts in Biochemistry, Molecular, Cell and Developmental Biology. We will read both classical papers and modern literature, drilling down to the essentials hidden behind cryptic acronyms and exotic-sounding techniques. We will primarily work with literature that has relevance to Materials Science, in particular bio-inspired materials, but will also consider suggestions submitted by participants.</td>
</tr>
<tr>
<td>MAT_SCI 485-0</td>
<td>Electronic and Thermal Properties of Materials (1 Unit)</td>
<td></td>
<td>Solid-state electronic structure from a solid-state chemistry perspective.</td>
</tr>
<tr>
<td>MAT_SCI 495-0</td>
<td>Advanced Special Topics in Material Science (1 Unit)</td>
<td></td>
<td>Topics suggested by students or faculty and approved by the department.</td>
</tr>
<tr>
<td>MAT_SCI 499-0</td>
<td>Projects (1 Unit)</td>
<td></td>
<td>Individual problems, including library or experimental work with a comprehensive report on some specific phase of materials science. PERMISSIONS OF INSTRUCTOR AND DEPARTMENT REQUIRED.</td>
</tr>
<tr>
<td>MAT_SCI 510-0</td>
<td>Special Topics (1 Unit)</td>
<td></td>
<td>Topics may be suggested by students or faculty, with the approval of the department.</td>
</tr>
<tr>
<td>MAT_SCI 590-0</td>
<td>Research (1-4 Units)</td>
<td></td>
<td>SEE DEPT FOR SECTION AND PERMISSION NUMBERS - Independent investigation of selected problems pertaining to thesis or dissertation. May be repeated for credit.</td>
</tr>
<tr>
<td>MAT_SCI 596-0</td>
<td>MS Thesis Research (1 Unit)</td>
<td></td>
<td>Research corresponding to MS thesis work for BS/MS students.</td>
</tr>
</tbody>
</table>