CHEMISTRY MAJOR

The major is recommended for students planning careers in chemistry. It is suitable preparation for graduate study in chemistry or medical school and for work as a professional chemist. The curriculum includes related courses in mathematics and physics as well as core courses and a concentration in chemistry.

Students must also complete the Undergraduate Registration Requirement (https://catalogs.northwestern.edu/undergraduate/requirements-policies/undergraduate-registration-requirement/) and the degree requirements of their home school.

Course	Title
CHEM 110-0 | Quantitative Problem Solving in Chemistry
& CHEM 131-0 | and General Chemistry I
& CHEM 141-0 | and General Chemistry Laboratory I
& CHEM 152-0 | and General Chemistry II
& CHEM 142-0 | and General Chemistry Laboratory II
or CHEM 151-0 | Accelerated General Chemistry I
& CHEM 161-0 | and Accelerated General Chemistry Laboratory I
& CHEM 152-0 | and Accelerated General Chemistry II
& CHEM 162-0 | and Accelerated General Chemistry Laboratory II
or CHEM 171-0 | Advanced General Inorganic Chemistry
& CHEM 181-0 | and Advanced General Inorganic Chemistry Laboratory
& CHEM 172-0 | Laboratory
& CHEM 182-0 | and Advanced General Physical Chemistry Laboratory

CHEM 220-0 | Introductory Instrumental Analysis
CHEM 212-1 | Organic Chemistry
& CHEM 232-1 | and Organic Chemistry Laboratory I
& CHEM 212-2 | and Organic Chemistry
& CHEM 232-2 | and Organic Chemistry Laboratory II
& CHEM 212-3 | and Organic Chemistry
& CHEM 235-3 | and Advanced Organic Chemistry Laboratory

CHEM 333-0 | Inorganic Chemistry
CHEM 342-1 | Thermodynamics
& CHEM 342-2 | and Quantum Mechanics and Spectroscopy
& CHEM 342-3 | and Kinetics and Statistical Thermodynamics
CHEM 350-1 | Advanced Laboratory I
& CHEM 350-2 | and Advanced Laboratory II
& CHEM 350-3 | and Advanced Laboratory III

2 courses from one of these concentration areas:
Biochemistry (p. 1)
Environmental Chemistry (p. 1)
Inorganic Chemistry (p. 2)
Organic Chemistry (p. 2)
Physical Chemistry (p. 2)
Materials/Nanotechnology (p. 2)
Self-designed Concentration (p. 2)

Related Courses (Units depend on mathematics courses taken.)
BIOL_SCI 301-0 | Principles of Biochemistry
or BIOL_SCI 241-0 | Biochemistry, Molecular and Cell Biology - 2 for ISP
MATH 220-1 | Single-Variable Differential Calculus
& MATH 220-2 | and Single-Variable Integral Calculus

PHYSICS 125-1 | General Physics ISP
& PHYSICS 125-2 | and General Physics for ISP
& PHYSICS 125-3 | and General Physics
& PHYSICS 126-1 | and Physics for ISP Laboratory
& PHYSICS 126-2 | and Physics for ISP Laboratory
& PHYSICS 126-3 | and Physics for ISP Laboratory
or PHYSICS 135-1 | General Physics
& PHYSICS 135-2 | and General Physics
& PHYSICS 135-3 | and General Physics
& PHYSICS 136-1 | and General Physics Laboratory
& PHYSICS 136-2 | and General Physics Laboratory
& PHYSICS 136-3 | and General Physics Laboratory
or PHYSICS 140-1 | Fundamentals of Physics
& PHYSICS 140-2 | and Fundamentals of Physics
& PHYSICS 140-3 | and Fundamentals of Physics
& PHYSICS 136-1 | and General Physics Laboratory
& PHYSICS 136-2 | and General Physics Laboratory
& PHYSICS 136-3 | and General Physics Laboratory

Concentration Courses

- Areas of concentration draw upon courses within the department as well as in other departments.
- Concentration courses are typically taken during the final year of undergraduate study.
- The concentration areas, along with eligible courses, are:

Biochemistry
Course	Title
CHEM 305-0 | Chemistry of Life Processes
CHEM 314-0 | Principles of Chemical Biology
CHEM 316-0 | Medicinal Chemistry: the Organic Chemistry of Drug Design and Action
CHEM 432-0 | X-Ray Crystallography
BIOL_SCI 361-0 | Protein Structure and Function

Environmental Chemistry
Course	Title
CHEM 306-0 | Environmental Chemistry
CHEM 393-0 | Green Chemistry
CHEM 445-0 | Advanced Physical & Analytical Chemistry
CIV_ENV 260-0 | Environmental Systems and Processes
CIV_ENV 314-0 | Organic Geochemistry
CIV_ENV 365-0 | Environmental Laboratory
CIV_ENV 367-0 | Chemical Processes in Aquatic Systems
Only applicable when class topic is “Chemistry of Alternate Energy”

Inorganic Chemistry

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 302-0</td>
<td>Principles of Inorganic Chemistry</td>
</tr>
<tr>
<td>CHEM 411-0</td>
<td>Organic Spectroscopy</td>
</tr>
<tr>
<td>CHEM 432-0</td>
<td>X-Ray Crystallography</td>
</tr>
<tr>
<td>CHEM 433-0</td>
<td>Structural Inorganic Chemistry</td>
</tr>
<tr>
<td>CHEM 434-0</td>
<td>Inorganic Chemistry</td>
</tr>
<tr>
<td>CHEM 435-0</td>
<td>Advanced Inorganic Chemistry</td>
</tr>
</tbody>
</table>

Organic Chemistry

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 309-0</td>
<td>Polymer Chemistry</td>
</tr>
<tr>
<td>CHEM 313-0</td>
<td>Advanced Organic Chemistry 1. Advanced concepts of organic reactivity and selectivity in synthesis.</td>
</tr>
<tr>
<td>CHEM 314-0</td>
<td>Principles of Chemical Biology</td>
</tr>
<tr>
<td>CHEM 316-0</td>
<td>Medicinal Chemistry: the Organic Chemistry of Drug Design and Action</td>
</tr>
<tr>
<td>CHEM 319-0</td>
<td>Advanced Organic Synthesis - Concepts and Applications</td>
</tr>
<tr>
<td>CHEM 410-0</td>
<td>Physical Organic Chemistry</td>
</tr>
<tr>
<td>CHEM 411-0</td>
<td>Organic Spectroscopy</td>
</tr>
<tr>
<td>CHEM 412-0</td>
<td>Organometallic Reaction Mechanisms</td>
</tr>
<tr>
<td>CHEM 415-0</td>
<td>Advanced Organic Chemistry</td>
</tr>
</tbody>
</table>

Physical Chemistry

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 442-1</td>
<td>Quantum Chemistry</td>
</tr>
<tr>
<td>CHEM 442-2</td>
<td>Quantum Chemistry</td>
</tr>
<tr>
<td>CHEM 443-0</td>
<td>Kinetics and Spectroscopy</td>
</tr>
<tr>
<td>CHEM 444-0</td>
<td>Elementary Statistical Mechanics</td>
</tr>
<tr>
<td>CHEM 445-0</td>
<td>Advanced Physical & Analytical Chemistry</td>
</tr>
<tr>
<td>CHEM 448-0</td>
<td>Computational Chemistry</td>
</tr>
</tbody>
</table>

Materials/Nanotechnology

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 307-0</td>
<td>Materials and Nanochemistry</td>
</tr>
<tr>
<td>CHEM 308-0</td>
<td>Design, Synthesis, and Applications of Nanomaterials</td>
</tr>
<tr>
<td>CHEM 309-0</td>
<td>Polymer Chemistry</td>
</tr>
<tr>
<td>MAT_SCI 201-0</td>
<td>Introduction to Materials</td>
</tr>
<tr>
<td>MAT_SCI 301-0</td>
<td>Materials Science Principles</td>
</tr>
<tr>
<td>MAT_SCI 331-0</td>
<td>Soft Materials</td>
</tr>
<tr>
<td>MAT_SCI 370-0</td>
<td>Biomaterials</td>
</tr>
</tbody>
</table>

Self-designed Concentration

If the concentrations above do not meet their interests, students may design a concentration with approval of the Director of Undergraduate Studies in Chemistry. A concentration may consist of 2 courses from the areas above or with a common theme.

Honors in Chemistry

Majors who have done outstanding work in the classroom and research laboratory may be eligible for graduation with honors in chemistry. Students who intend to submit a senior thesis should send an e-mail message (including the name of the research adviser) to the director of undergraduate studies by fall of senior year. To be eligible for honors, a student must meet minimum GPA requirements, engage in original research during at least two quarters of CHEM 399-0 Independent Study, and write a senior thesis on this research. The CHEM 399-0 credits are not required for and do not count toward the chemistry major.

Students whose theses and grades meet department criteria are recommended to the college for graduation with honors. For more information consult the Director of Undergraduate Studies in Chemistry and see Honors in the Major (https://catalogs.northwestern.edu/undergraduate/arts-sciences/#academicoptionstext).

Honors Program in Medical Education Students

Chemistry majors who are also participating in the HPME program (https://catalogs.northwestern.edu/undergraduate/dual-graduate-undergraduate-degrees/honors-program-medical-education/) are permitted two waivers in their major. Only one of these waivers may be used for a core program course; the second waiver may be used for a concentration course.