Data Science, MS Data Engineering Specialization
After analysts and modelers have built and tested models, data engineers implement models to scale within an information infrastructure, creating systems and workflows to organize and manage large quantities of data. This means understanding computer systems (including software, hardware, data collection, and data processes) and solving problems related to data collection, security, and organization. This specialization trains data scientists to utilize system-wide problem-solving skills, choose hardware systems, and build software systems for implementing models made by data analysts to scale in productions systems.
Curriculum
Core Courses (8 units)
Course | Title |
---|---|
MSDS 400-DL | Math for Modelers |
MSDS 401-DL/401-0 | Applied Statistics with R |
MSDS 420-DL/420-0 | Database Systems |
MSDS 422-DL/422-0 | Practical Machine Learning |
MSDS 460-DL/460-0 | Decision Analytics |
MSDS 485-DL/485-0 | Data Governance, Ethics, and Law |
MSDS 498-DL/498-0 | Capstone Class |
or MSDS 590-DL | Thesis Research |
Any one of the following: 1 | |
Research Design for Data Science | |
Data Science and Digital Transformation | |
Technology Entrepreneurship | |
Management Consulting | |
Accounting and Finance for Technology Managers | |
Project Management | |
Business Process Analytics | |
Business Leadership and Communications |
- 1
Students need to choose one of these eight course options to fulfill the business, leadership, communication requirement. A student cannot fulfill a core and specialization requirement with the same course.
Specialization Courses (4 units)
Course | Title |
---|---|
MSDS 432-DL | Foundations of Data Engineering |
MSDS 434-DL | Data Science and Cloud Computing |
Any two electives | |
Research Design for Data Science | |
Data Science and Digital Transformation | |
Supervised Learning Methods | |
Unsupervised Learning Methods | |
Times Series Analysis and Forecasting | |
Python for Data Analysis | |
Data Engineering with Go | |
Analytics Systems Engineering | |
Conversational AI Assistants | |
Data Pipelines and Stream Processing | |
Marketing Analytics | |
Financial Machine Learning | |
Web and Network Data Science | |
Natural Language Processing | |
Applied Probability and Simulation Modeling | |
Data Visualization | |
Sports Performance Analytics | |
Sports Management Analytics | |
Artificial Intelligence and Deep Learning | |
Knowledge Engineering | |
Computer Vision | |
Intelligent Systems and Robotics | |
Technology Entrepreneurship | |
Management Consulting | |
Accounting and Finance for Technology Managers | |
Project Management | |
Business Process Analytics | |
Business Leadership and Communications | |
Special Topics in Data Science | |
Independent Study |
About the Final Project
As their final course in the program, students take either a master's thesis project in an independent study format or a classroom final project class in which students integrate the knowledge they have gained in the core curriculum in a team project approved by the instructor. In both cases, students are guided by faculty in exploring the body of knowledge of data science. The master’s thesis or capstone class project count as one unit of credit.
Course | Title |
---|---|
Choose one | |
Capstone Class | |
Thesis Research |